

Evidence for Unified Assessment Criteria of HER2 IHC in Colorectal Carcinoma

Mark G. Evans¹, Harris B. Krause¹, Andrew Elliott¹, Emil Lou², Hassan Ghani¹, Rhonda K. Yantiss³, Monica T. Garcia-Buitrago³, Jinru Shia⁴, Rona Yaeger⁴, Matthew J. Oberley¹, David A. Bryant¹, Jaclyn F. Hechtman¹

Figure 1. Example of HER2/Het+ CRC

Hematoxylin/eosin staining (A, 40x magnification) and HER2 IHC

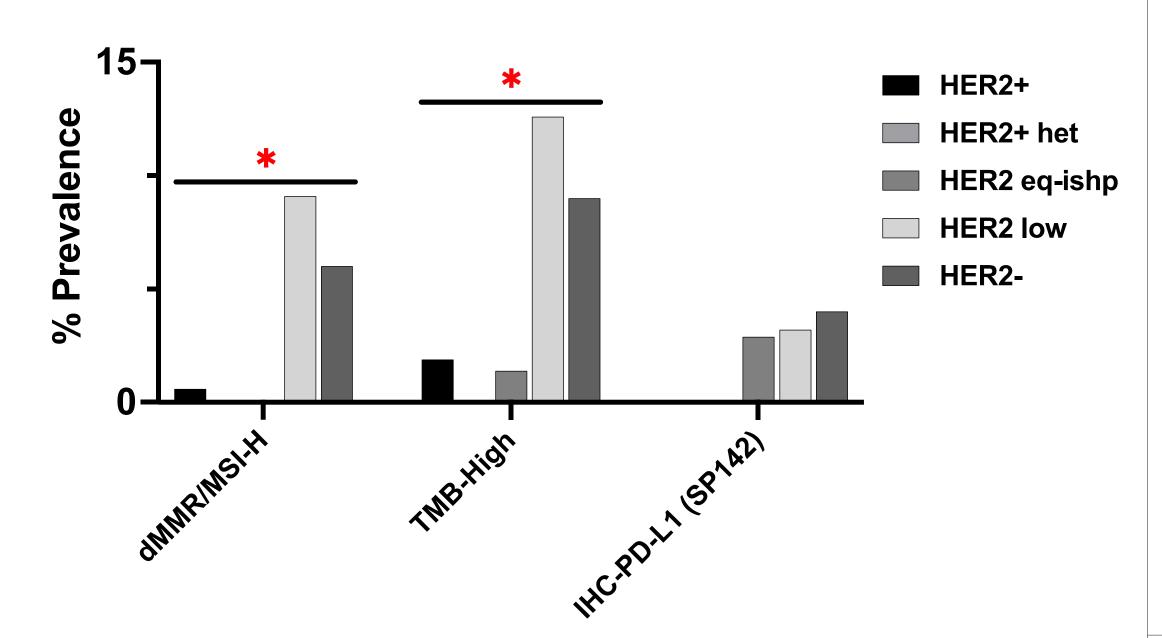
(B, 40x magnification) display 3+ staining in 15% of neoplastic cells.

HER2 ISH confirms *ERBB2* amplification (inset **C**, 200x magnification).

Introduction

- HER2 expression is an important biomarker for the management of RAS wild-type metastatic colorectal carcinoma.
- Immunohistochemistry (IHC) with reflex in situ hybridization (ISH) is accepted as a standard method of assessment, yet there are currently two sets of criteria used to interpret results:
- HERACLES criteria: ISH confirmation when IHC staining is 3+ in 10-49% of cells.
- My Pathway criteria: Do not require ISH confirmation when IHC staining is 3+ in 10-49% of cells.
- We aimed to assess the prevalence of HER2 3+ heterogeneity and its association with HER2 copy number amplification (CNA).

Materials and Methods


- Paraffin-embedded tumor samples underwent DNA (592-gene or whole exome) and RNA (whole transcriptome) sequencing, utilizing the Agilent SureSelect Human All Exon V7 bait panel (Santa Clara, CA) and Illumina NovaSeq technology (San Diego, CA).
- HER2 (4B5) expression was tested by
- A subset of tumors were tested for HER2 amplification via ISH and/or via NGS (amplified, CNA ≥6 copies).
- X2/Fisher-Exact tests were applied where appropriate, with p-values adjusted for multiple comparisons (p< 0.05).

Results

	HER2 pos	HER2 pos het	HER2 eq-ishp	HER2 low	HER2 neg	Statistic	p-value
Count (N)	166	28	72	1401	11541		
Median Age [range] (N)	59 [22 - >89] (166)	61 [22 - 85] (28)	65 [31 - 82] (72)	62 [19 - >89] (1401)	63 [14 - >89] (11541)	Kruskal- Wallis	0.028
Female	40.4% (67/166)	42.9% 45.8%		46.8% (656/140 1)	45.4% (5239/11541)	chi-square	0.577
Male	59.6% (99/166)	57.1% (16/28)	54.2% (39/72)	53.2% (745/140 1)	54.6% (6302/11541)	chi-square	0.577

Of 13,796 CRC with HER2 IHC, 93.9% were negative for HER2 overexpression (intensity <2 or <10% tumor cell expression); 4.8% (656/13605) were equivocal (2, \geq 10%). Only, 1.4% of tumors were either positive or heterogeneously positive for HER2 overexpression (3+, \geq 10%). Abbreviations: pos - IHC positive; Het+ - IHC heterogenous; eq-ishp - IHC equivocal/ISH positive; low - IHC low (1+ intensity in ≥10% or 2+ staining in ≥10% but ISH negative); neg - IHC negative.

Table 2. Additional Genomic Features

Microsatellite instability in 0.5%, 11.6%, & 6.2% of HER2 pos, eq, & neg cases TMB high (≥10 Muts/Mb) was mostly detected in the neg and eq tumors. Only 1.6% of HER2 pos cases showed a mutational burden ≥10 Muts/Mb. Abbreviations: dMMR - mismatch repair protein deficient by IHC; MSI-H - microsatellite instability; TMB - tumor mutational burden.

Conclusions

HER2 IHC/ISH

 CRCs that were HER2/Het+ were invariably ISH positive, while NGS was not as sensitive for HER2 amplification in this subgroup. Our results suggest that ISH is likely unnecessary for CRC with 3+ HER2 overexpression in 10-49% of tumor cells, and that NGS has suboptimal sensitivity for this cohort.

Features	Positive (HER2 pos)	Negative (HER2 pos)	Percentage (HER2 pos)	Positive (HER2 pos het)	Negative (HER2 pos het)	Percentage (HER2 pos het)	Positive (HER2 eq- ishp)	Negative (HER2 eq- ishp)	Percentage (HER2 eq- ishp)	Positive (HER2 low)	Negative (HER2 low)	Percentage (HER2 low)	Positive (HER2 neg)	Negative (HER2 neg)	Percentage (HER2 neg)	Statistic	q-value
CNA-ERBB2	153	6	96.2	21	7	75.0	29.0	40	42.0	2	1337	0.15	7	10824	0.06	Fisher's Exact	0.0125
CISH-Her2 CISH	67	0	100.0	21	1	95.5	69.0	0	100.0	0	214	0	1	1	1	chi-square	<0.001

Table 3. HER2 IHC Status, Heterogeneity, and Correlation with ISH and Gene Amplification Studies

Of HER2 overexpressing tumors, 13.1% (25/191) had heterogenous HER2 overexpression (HER2/Het+, 3+ staining of 10-49% of cells).

Twenty cases were HER2/Het+ and had ISH testing. Of these, 100% (20/20) demonstrated amplification via ISH.

Ninety-six percent (153/159) of HER2+ CRC (3+, ≥50%) also showed *ERBB2* amplification by NGS, whereas 80% (20/25) of HER2/Het+ CRC demonstrated *ERBB2* amplification by NGS (p<0.001).

References

- Sartore-Bianchi A, Trusolino L, Martino C, et al. Dual-targeted therapy with trastuzumab and lapatinib in treatment-refractory, KRAS codon 12/13 wildtype, HER2-positive metastatic colorectal cancer (HERACLES): a proof-ofconcept, multicentre, open-label, phase 2 trial. Lancet Oncol. 2016 Jun;17(6):738-746.
- Hainsworth JD, Meric-Bernstam F, Swanton C, et al. Targeted therapy for advanced solid tumors on the basis of molecular profiles: results from MyPathway, an open-label, phase IIa multiple basket study. J Clin Oncol. 2018 Feb 20;36(6):536-542.
- Meric-Bernstam F, Hurwitz H, Raghav KPS, et al. Pertuzumab plus trastuzumab for HER2-amplified metastatic colorectal cancer (MyPathway): an updated report from a multicentre, open-label, phase 2a, multiple basket study. Lancet Oncol. 2019 Apr;20(4):518-530.

Contact

Jaclyn Hechtman, MD (jhechtman@carisls.com)