

Clinical-Pathologic and Molecular Features of IDH1-Mutant Prostate Cancers

Qingqing Wu¹, Mark Evans², Shayan S. Nazari², Lia DePaula Oliveira¹, Shreeya Indulkar¹, Emmanual S. Antonarakis³, Laura A Sena¹, Tamara L. Lotan^{1,4,5}.

¹Department of Pathology, Johns Hopkins University School of Medicine; ²Caris Life Sciences; ³Department of Oncology, University of Minnesota; ⁴Department of Oncology, Johns Hopkins University School of Medicine; ⁵Department of Urology, Johns Hopkins University School of Medicine.

Background

- Prostate cancers with *IDH1* mutations (*IDH1*-mt) represent a rare (<1%), potentially targetable subtype characterized by genome-wide DNA hypermethylation.
- One previous cohort of four *IDH1*-mt tumors identified the presence of psammomatous calcifications and anterior tumor location as pathologic features of these tumors, however clinical follow-up was not available.
- Here, we report the clinical-pathologic and molecular features for 10 IDH1-mt prostate tumors from Johns Hopkins (JH) and 35 IDH1-mt tumors from Caris, and we examine clinical outcomes in a separate group (n=24) from cBioportal.

Design

- JH identified cases (n=10) were primary tumors by immunohistochemistry specific for the R132H mutation (Clone H09, Dianova) performed on tissue microarrays (n=2) or research-based or clinical next generation sequencing (NGS) assays (n=8). 80% (8/10) had radical prostatectomy tissue available for pathologic rereview, and 6 of these had known ERG and PTEN status based on genetically validated immunohistochemistry.
- Caris cases (n=35) were identified by NGS, including 27 primary/local disease samples and 8 metastatic samples. 89% (24/27) of local samples and 100% (8/8) of metastatic samples had paired H&E images for re-review.
- cBioportal cases (n=24) were compared to *IDH1*-wild type (-wt) cases (n=10,677).

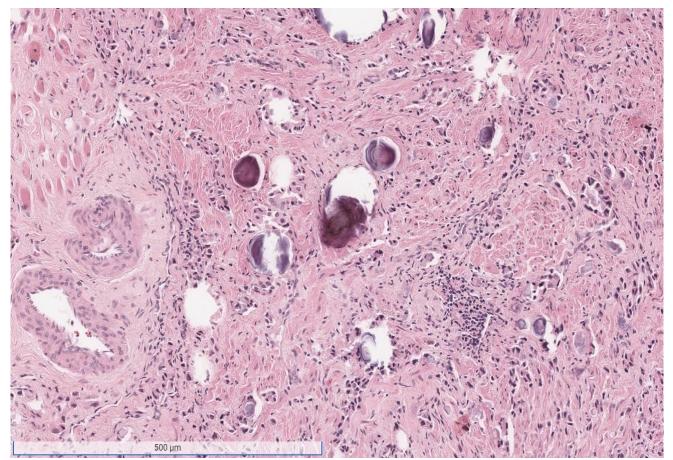


Figure 1. IDH1-mt prostatic adenocarcinoma with poorly formed glands, and single cells with scattered intratumoral psammomatous calcification in the anterior apex.

ID	IDH1 mutation	ID'd by	Age at diagnosis	IDH1 mutation	Self- reported Race	Family history	PSA at diagnosis	Gleason at diagnosis	Stage at Diagnosis (TNM)	Risk Group	Psammoma bodies	Anterior tumor
1	R132H	NGS	58	R132H	Unk	None	23.8	5+5=10 (5)	T3bN0M0	Very high	ND	ND
2	R132H	NGS	48	R132H	Asian	Yes	49	4+5=9 (5)	T2cN0M0	High	No	Yes
3	R132C	NGS	61	R132C	Unk	Yes	2.7	4+3=7 (3)	T2bN0M0	Unfavorable intermediate	ND	ND
4	R132C	NGS	67	R132C	White	Yes	6.7	4+5=9 (5)	T3bN0	Very high	No	No
5	R132L	NGS	62	R132L	Black	Unk	Unk	3+4=7 (2)	T3aN0M0	Favorable intermediate	Yes	Yes
6	R132C	NGS	65	R132C	Black	None	5.4	3+4=7 (2)	T3bN0M0	Favorable intermediate	No	No
7	R132C	NGS	40	R132C	Black	None	7.4	5+3=8 (4)	T3aN0M0	Very high	Yes	Yes
8	R132G	NGS	63	R132G	Black	Yes	4	4+3=7 (3)	T2cN0M0	Unfavorable intermediate	No	Yes
9	R132H	ІНС	50	R132H	White	Unk	10	4+3=7 (3)	T2N0M0	Unfavorable intermediate	No	Yes
10	R132H	ІНС	58	R132H	White	Yes	15.5	3+3=6 (1)	T2N0M0	Favorable intermediate	Yes	Yes

Results

Table 1: Clinical-pathologic features of JH IDH1-mt cases

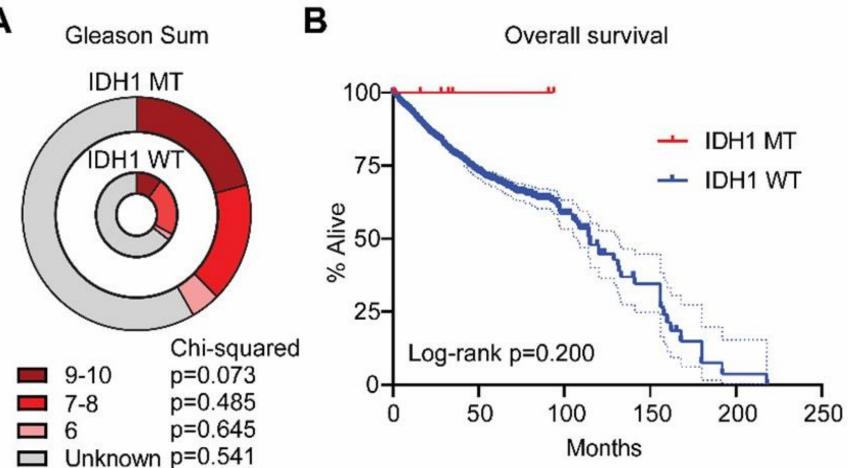
Clinical-pathologic summary of JH and Caris cases:

• JH and Caris IDH1-mt cases commonly had adverse pathologic features (potentially partly confounded by their selection for NGS). JH cases showed a predominance of anterior dominant tumor

nodules.

· Psammoma bodies were present in only a minority of JH and Caris IDH1-mt cases (note that Hopkins cases were entirely rereviewed for calcifications, while Caris cases had only one representative H&E available for re-review.

Molecular summary of JH and Caris cases:


ETS family fusions were rare among the IDH1-mt cases (p<0.05 in comparison to IDH1-wt Caris cases).

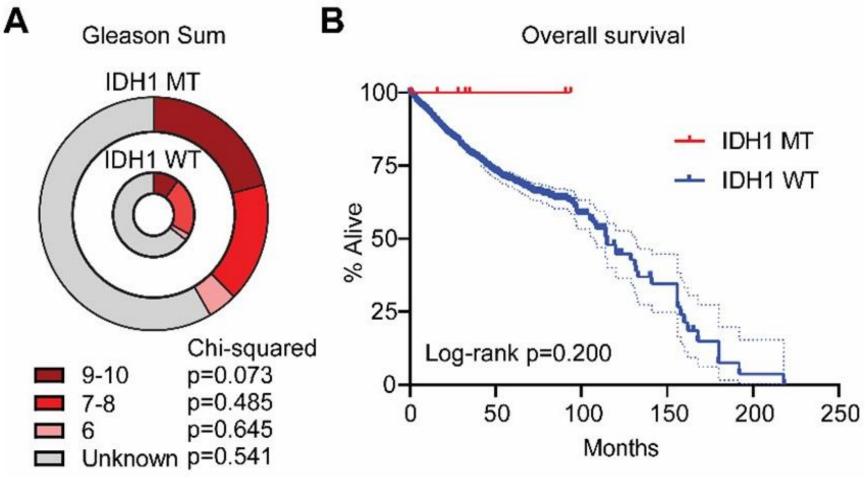

• FOXA1 mutations were common in IDH1-mt cases (p<0.05 in comparison to *IDH1*-wt Caris cases).

Table 2: Clinical-pathologic/molecular features of JH and Caris IDH1-mt cases

	JH cases	Caris cases
n	10 primaries	24 primaries, 8 mets
<i>IDH1</i> p.R132C, p.R132H, p.R132G	40%, 40%, 10%	49%, 23%, 20%
Median age	60 years	69 years
Family history	63%	NA
Grade group 4/5	40%	67% primaries
Non-organ confined	50%	NA
Anterior dominant nodule	75%	NA
Psammoma bodies	38%	17% primaries, 13% mets
ETS family fusions	0% (IHC)	4% primaries, 0% mets
FOXA1 mutations	33%	33% primaries, 25% mets

Clinical outcomes of JH and cBiorportal cases:

Data are limited by the rarity of this subtype, however IDH1-mt prostate tumors tend to have high grade and stage and anterior location, but favorable outcomes after radical prostatectomy. Psamommatous calcifications may be enriched but are not a sensitive indicator of this subtype in our cohorts. FOXA1 mutations are common and *ETS* rearrangements are rare in *IDH1*-mt tumors.

1. Mauzo SH, Lee M, Petros J, et al. Immunohistochemical demonstration of isocitrate dehydrogenase 1 (IDH1) mutation in a small subset of prostatic carcinomas. Appl Immunohistochem Mol Morphol. 2014;22(4): 284e287.

2. Hinsch A, Brolund M, Hube-Magg C, et al. Immunohistochemically detected IDH1R132H mutation is rare and mostly heterogeneous in prostate cancer. World J Urol. 2018;36(6):877e882.

3. Mehra R, Shah T, Liu CJ, et al. Highly Recurrent IDH1 Mutations in Prostate Cancer with Psammomatous Calcification. Mod Pathol. 2023;36(6): 100146

4. Woods JE, Soh S, Wheeler TM. Distribution and significance of microcalcifications in the neoplastic and nonneoplastic prostate. Arch Pathol Lab Med. 1998;122(2):152e155.

5. Suh JH, Gardner JM, Kee KH, et al. Calcifications in prostate and ejaculatory system: a study on 298 consecutive whole mount sections of prostate from radical prostatectomy or cystoprostatectomy specimens. Ann Diagn Pathol. 2008;12(3):165e170.

• JH cases: Although 40% (4/10) of *IDH1*-mt patients required radiation and androgen deprivation therapy after prostatectomy, 90% (9/10) had **no evidence of disease** with a median follow-up of 15 years.

cBioportal cases: Compared to IDH1-wt cases, IDH1-mt prostate cancer cases in cBioportal tended to have higher Grade Group (21%) vs 10% with Grade Group 5, p=0.073), but longer survival (p=0.200).

Figure. Comparison of features of pts with IDH1-mt PCa (n=24) vs IDH1-wt PCa (n=10,677) in cBioPortal database.

Conclusions

References