The genomic, transcriptomic, an immunological profile of patients with recurrent/refractory NSCLC

Dan Morgenstern-Kaplan¹, Samuel A. Kareff¹, Nishant Gandhi², Andrew Elliott², Marco Magistri², Daniel Sumarriva², Ari Vanderwalde², Ana S. Salazar¹, Patrick C. Ma³, Balazs Halmos⁴, Coral Olazagasti¹, Gilberto Lopes¹, Hina Khan⁵, Estelamari Rodriguez¹

Background

• Lung cancer is the leading cause of cancer-related deaths worldwide, and >50% of patients present as stage III or IV.

UNIVERSITY OF MIAMI HEALTH SYSTEM

- Recently, patients with relapsing/remitting stage III NSCLC (R/R) were described to have worse overall survival compared to *de novo* stage IV (DN) patients when treated with chemoradiation and immunotherapy.
- In this study, we aimed to compare the molecular and immune landscapes of these two patient populations to identify potential differences in biomarkers of resistance and possible targets for therapy

Objectives and Methods

- 3728 NSCLC specimens underwent sequencing of DNA (592-gene panel or whole exome) or RNA (whole transcriptome) or immunohistochemistry at Caris Life Sciences (Phoenix, AZ).
- Patients were classified as R/R (n=26) if they received Durvalumab and chemoradiation within 12 months (m) before tissue collection and treated with Pembrolizumab within 6 m after tissue collection.
- Patients treated with Pembrolizumab within 6 months (m) after tissue collection but had no prior (or post) treatment with Durvalumab and chemoradiation at any point in time were classified as DN (n=3702).
- Tumor microenvironment (TME) cell fractions were estimated from bulk RNA sequencing using the QuanTlseq method.
- Statistical significance was determined using chisquare, Mann Whitney U and adjusted for multiple comparisons where applicable (q < 0.05).

- Pembrolizumab. and characterize

¹University of Miami Sylvester Comprehensive Cancer Center/Jackson Memorial Hospital, Miami, FL; ²Caris Life Sciences, Phoenix, AZ; ³Division of Hematology/Oncology, Penn State Cancer Institute, Hershey, PA; ⁴Montefiore Einstein Comprehensive Cancer Center, Bronx, NY; ⁵Department of Hematology-Oncology, Brown University, Providence, Rhode Island

> (A) Patients with Stage 3 unresectable NSCLC are treated with chemoradiation + Durvalumab and upon progression are treated with Pembrolizumab, hence these specimens have previously been exposed to chemoradiation and Durvalumab (B) Patients with Stage 4 (DN) are not exposed to

chemoradiation and Durvalumab before treatment with

These are the two populations our study is attempting to simulate

Gene mutations highlighted had a statistical significance of p<0.05 between the two cohorts. Among the more prevalent mutations, mutations in TP53 and KEAP1 were higher, while mutations in KRAS were lower in R/R vs DN. Although at a low overall prevalence, mutations in BCL2 and BCL9 were higher in R/R vs DN (q<0.05). **** q<0.0001, *q<0.05

Figure 3. Gene amplifications associated with disease stage Gene Amplifications

Feature	# positive R/R Stage 3	# Total R/R Stage 3	% Prevalence R/R Stage 3	# positive de novo Stage 4	# Total de novo Stage 4	% Prevalence de novo Stage 4	
PIK3CA	2	22	9.09	33	2651	1.24	-
NUTM1	1	22	4.55	0	2666	0	
SMO	1	22	4.55	2	2668	0.07	
CHIC2	1	22	4.55	6	2553	0.24	
FLCN	1	22	4.55	8	2669	0.3	

Gene mutations highlighted had a statistical significance of p<0.05 between the two cohorts. Among the more prevalent mutations, mutations in TP53 and *KEAP1* were higher, while mutations in *KRAS* were lower in R/R vs DN. Although at a low overall prevalence, mutations in BCL2 and BCL9 were higher in R/R vs DN (q<0.05). **** q<0.0001, *q<0.05

Figure 2. Mutational landscape associated with disease stage

Results

Feature	# positive R/R Stage 3	# Total R/R Stage 3	% Prevalence R/R Stage 3	# positive de novo Stage 4	# Total de novo Stage 4	% Prevalence de novo Stage 4	p-value	q-value
TP53 (mut)	21	23	91.3	1990	2924	68.06	0.0171	0.5683
PD-L1+(IHC)	14	23	60.87	2216	3482	63.64	0.783	0.99
TMB (High)	13	25	52	1358	3171	42.83	0.3559	0.99
KEAP1 (mut)	7	23	30.43	439	2963	14.82	0.0363	0.7051
STK11 (mut)	2	21	9.52	366	2958	12.37	0.6925	0.99
CDKN2A (mut)	1	21	4.76	324	2917	11.11	0.3556	0.99

A panel of common IO-related biomarkers are highlighted in the bar graph and table above. Increase in mutational prevalence of TP53 and KEAP1 observed in R/R were highlighted in Fig2. Differences in the other biomarkers were numerical, between the two cohorts.

Feature Macrophage M1 Neutrophil Macrophage M2 B cell T cell regulatory (Tregs T cel CD8+ Monocyte Myeloid dendritic cell cel CD4+ (non-regulatory

Conclusions

- R/R patient tumors had distinct molecular alterations and immune landscapes, including an increased prevalence of biomarkers associated with immunotherapy resistance (TP53 and KEAP1 mutations) and reduced B- and Treg- cell fractions, which may suggest decreased likelihood of response to immunotherapy compared to patients with DN NSCLC.
- Molecular features might be able to define more aggressive interventions in the future for patients with R/R Stage III NSCLC where further treatment intensification might be needed.

Contact Information

달 @dan_morgen Dlatinamd

