

Spectrum of acquired KRAS mutations in driver mutation-positive non-small cell lung cancer Joshua E. Reuss¹, Nishant Gandhi², Phillip Walker², Jorge J. Nieva³, Jean Gabriel Bustamante Alvarez⁴, Jennifer W. Carlisle⁵, Aakash Desai⁶, Ari M. Vanderwalde², Patrick C. Ma⁷, Stephen V. Liu¹

9069

¹Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC; ²Caris Life Sciences, Phoenix, AZ; ³University of Southern California, Norris Comprehensive Cancer Center, Los Angeles, CA; ⁴West Virginia University Health Sciences Center, Morgantown, WV, ⁵ Emory University, Atlanta, GA; ⁶ Mayo Clinic, Rochester, MN; ⁷Penn State Milton S. Hershey Medical Center, Hershey, PA

Background

- With the emergence of effective therapies targeting specific *KRAS* mutations (mt), identifying these unique KRASmts in NSCLC has become increasingly relevant.
- Acquired *KRAS* mutations are a known resistance mechanism in driver mutation-positive (DM+) NSCLC.
- The incidence and diversity of these acquired alterations and whether they differ from those observed in de novo KRASmt NSCLC is unknown.
- We aimed to characterize the distribution of KRASmt between acquired and de novo KRASmt NSCLC, as well as the distribution of unique *KRASmt* by driver mutation.

Objectives and Methods

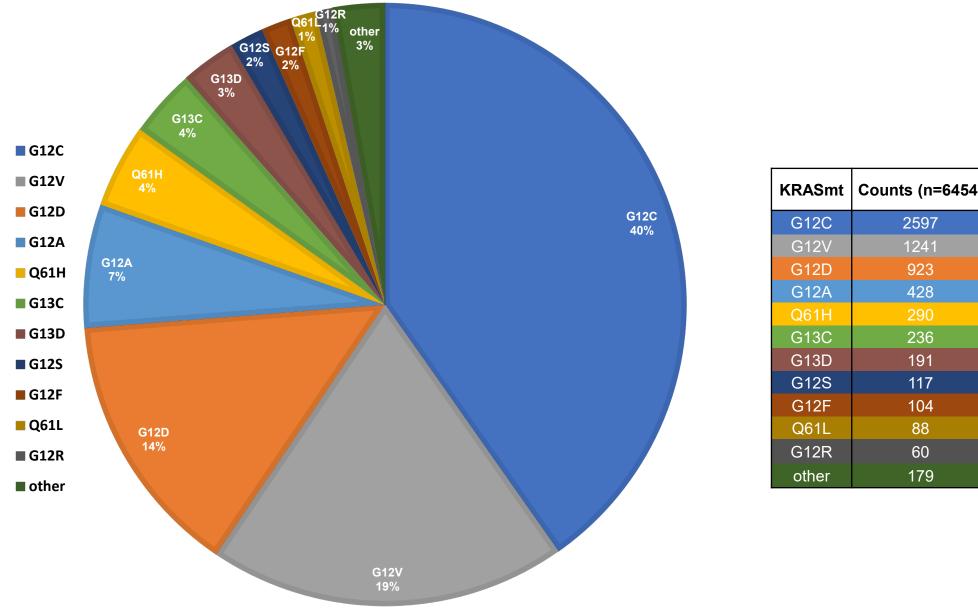
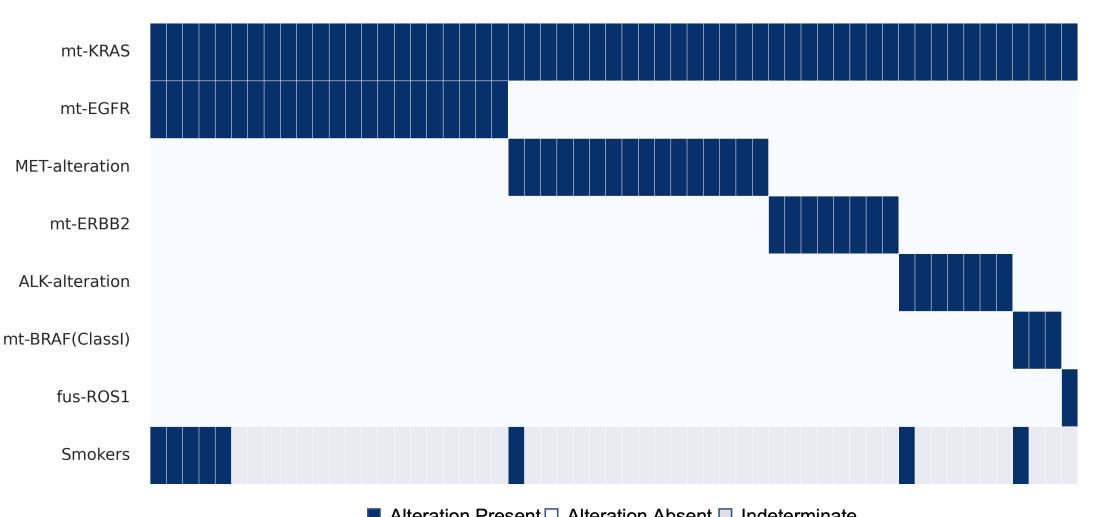
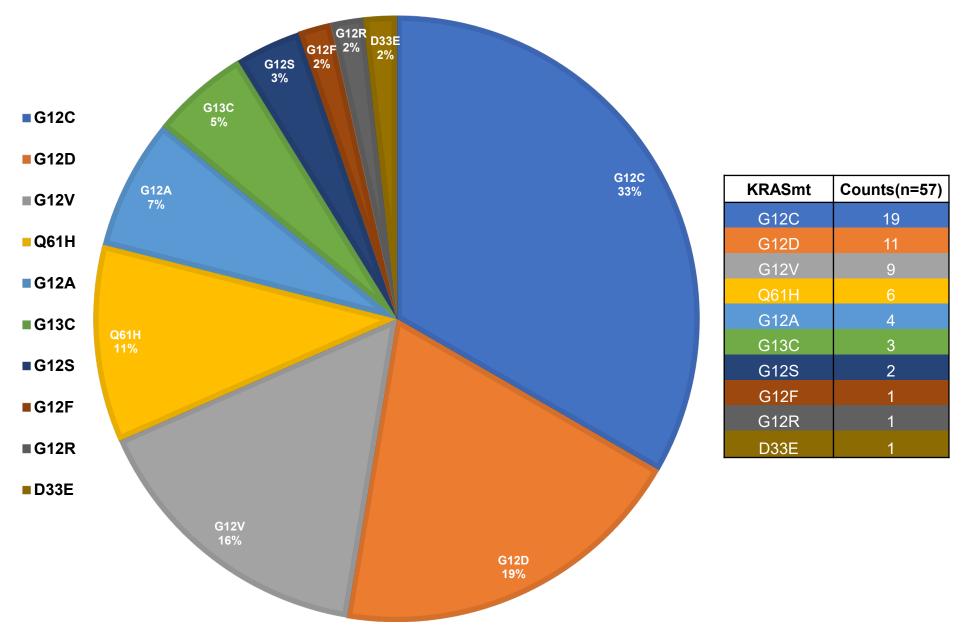

- NSCLC samples were analyzed at Caris Life Sciences (Phoenix, AZ) with DNA-based nextgeneration sequencing (NGS; 592 genes, NextSeq) or whole-exome sequencing (NovaSeq) and with RNA-based whole-transcriptome sequencing (WTS, NovaSeq).
- Demographics were abstracted from medical records.
- KRASmt subgroups were defined as *de novo KRASmt* NSCLC (*KRAS* only identified driver – DN) and DM+ NSCLC with acquired KRASmt (concurrent *KRASmt* with other known drivers – ACQ)
- Queried known oncogenic drivers in NSCLC included: *EGFR*, *MET*, *ERBB2* & *BRAF* mutations; *METex14* skipping; *ALK*(overexpression + fusions), RET, ROS1, NRG1, NTRK1-3 fusions
- Due to the unique biology of NSCLC with class II/III BRAF mutations, this subset was excluded from the ACQ subgroup for the final analysis
- Fisher's exact, chi-square and Mann-Whitney U tests were performed where appropriate and p-values were corrected for multiple hypothesis testing (q<0.05)

Table 1: Demographic differences between acquired KRASmt- and de novo KRASmt-NSCLC


Features	ACQ (n=57)	DN (n=6433)	Statistic	p-value	q-value
Median Age	72	69	69 Mann-Whitney U		0.088668
Male	59.6% (34/57)	43.0% (2767/6433)	chi-square		0.046312
Female	40.4% (23/57)	57.0% (3666/6433)	chi-square	0.011578	0.046312
Smoker	100.0% (8/8)	98.5% (1755/1781)	Fisher's Exact	1	1
Non-smoker	0.0% (0/8)	1.5% (26/1781)	Fisher's Exact	1	1
Adenocarcinoma	78.9% (45/57)	83.5% (5374/6433)	Fisher's Exact	0.533045	0.710727
Squamous Carcinoma	1.8% (1/57)	1.8% (113/6433)	Fisher's Exact	0.533045	0.710727
Sarcomatoid	1.8% (1/57)	0.8% (51/6433)	Fisher's Exact	0.533045	0.710727
Adenosquamous Carcinoma	0.0% (0/57)	0.7% (45/6433)	Fisher's Exact	0.533045	0.710727
Large Cell Carcinoma	0.0% (0/57)	0.2% (13/6433)	Fisher's Exact	0.533045	0.710727
Other/Unclear Histology	17.5% (10/57)	13.0% (837/6433)	Fisher's Exact	0.533045	0.710727

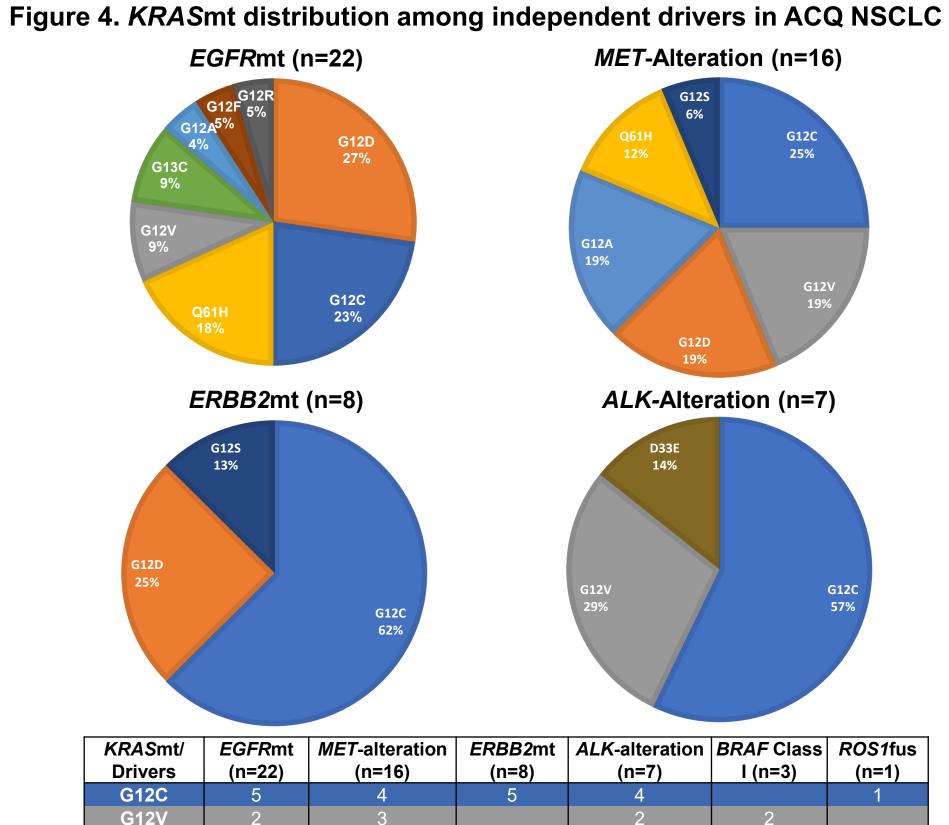
The median age of patients was higher in the ACQ compared to the DN cohort (p<0.05, q>0.05). There was a significantly higher proportion of males in the ACQ subgroup and females in the DN subgroup (q<0.05).

Figure 1: KRAS mutation distribution among de novo KRASmt driven NSCLC



KRAS G12C (40%), G12V (19%) and G12D (14%) were most common and combined for ~73% of the total KRAS mutations in the DN subgroup.

Alteration Present Alteration Absent Indeterminate Among the oncogenic drivers in the ACQ subgroup, mutations in EGFR (38.6%) and MET (28.1%) were most prevalent.


Figure 3: KRASmt distribution among ACQ subgroup

KRAS G12C (33%), G12D (19%) and G12V (16%) were most common and combined for ~68%% of the total KRAS mutations in the ACQ subgroup. The distribution of unique KRAS mutations was not significantly different between DN and ACQ groups (p=0.25).

Results

Figure 2: Landscape of driver mutations in the ACQ subgroup

<i>KRAS</i> mt/ Drivers	<i>EGFR</i> mt (n=22)	<i>MET</i> -alteration (n=16)	<i>ERBB2</i> mt (n=8)	ALK-alteration (n=7)	BRAF Class I (n=3)	<i>ROS1</i> fus (n=1)
G12C	5	4	5	4		1
G12V	2	3		2	2	
G12D	6	3	2			
Q61H	4	2				
G12A	1	3				
G13C	2				1	
G12S		1	1			
D33E				1		
G12F	1					
G12R	1					

KRAS G12C and G12V mutations were among the more frequent mutations observed across individual drivers in the ACQ subgroup.

Conclusions

- While the distribution of unique *KRAS* mutations did not differ significantly between DN and ACQ subgroups, acquired KRAS mutations at varying frequencies were seen across DM+ NSCLC subsets.
- The functional and immunological significance of these mutations, and their impact on clinical outcomes, warrants further investigation.

Contact Information

joshua.e.reuss@gunet.georgetown.edu

MET-Alteration (n=16) ALK-Alteration (n=7)