

Abstract ID# 9027: The Genomic, Transcriptomic, and Immunological Landscape of Sodium-glucose cotrasporter-2 in Lung Cancer and Association with Clinical Outcomes

Heng Tan¹, Samuel Kareff², Harris Krause³, Andrew Elliott³, Alex Farrell³, Stephen V. Liu⁴, Patrick Ma⁵, Ari VanderWalde³, Milan Radovich³, George Sledge³, Gilberto Lopes² ¹University of Miami/Jackson Memorial Hospital; ²University of Miami Sylvester Comprehensive Cancer Center/Jackson Memorial Hospital; ³Caris Life Sciences. ⁴Georgetown University, Washington, DC, ⁵Penn State University, State College, PA

Background

- In vivo data indicate SGLT2 plays a role in the development of NSCLC.
- SGLT2 inhibitors are associated with a lower incidence of cancer development.
- Aim: Characterize the genomic and immunological landscape of tumors with high and low expression of SGLT2-coding gene SLC5A2 in NSCLC [adenocarcinoma (AC) or squamous cell carcinoma (SCC) histology] and the relationship with clinical outcomes.

Methods

- NSCLC tumors of AC (N = 11,725) or SCC (N = 4,158) histology were tested at Caris Life Sciences (Phoenix, AZ) with NextGen Sequencing on DNA (592 genes or whole exome) and RNA (whole transcriptome).
- Tumors were divided by *SLC5A2* expression quartiles based of expression in all NSCLC tumors (Q4: SLC5A2-H, Q1: SLC5A2-L).
- PD-L1 expression (22C3; Positive (+): TPS \geq 1%) was assessed by IHC.
- High tumor mutational burden (TMB-H) was defined as ≥ 10 mutations/MB.
- Mutations were defined as pathogenic SNVs/indels. SLC5A2-H and -L expression (transcripts per million) was defined as top and bottom quartile, respectively.
- A transcriptomic signature predictive of response to immunotherapy was applied (T cell-inflamed; Bao, 2020).
- The Mann-Whitney U test was applied as appropriate, with P-values adjusted for multiple comparisons (p < .05).
- Real-world overall survival (OS) data was obtained from insurance claims and Kaplan-Meier estimates were calculated for molecularly defined subpopulations of patients (N = 13,505).

	<i>SLC5A2</i> Q1	<i>SLC5A2</i> Q2	SLC5A2 Q3	<i>SLC5A2</i> Q4	Statistic	q-value	
Histology							
Adenocarcinoma	46%	50%	55%	65%	Fichar's Exact	0.00	
	(2487/5401)	2726/5401)	(2994/5400)	(3518/5401)	FISHER'S EXACL	0.00	
Squamous cell carcinoma	25%	22%	19%	11%	Fichar's Evant	0.00	
	(1331/5401)	1194/5401)	(1023/5400)	(610/5401)	FISHER'S EXACL		
Other	29%	27%	26%	24%	Fichar's Evant	0.00	
	(1583/5401)	(1481/5401)	(1383/5400)	(1273/5401)	FISHER'S EXACL	0.00	

Table 1: Cohort makeup by histology and *SLC5A2* expression quartile.

ASCO. June 2023

(A)

(C)

(A)

Time, days

	Collection-> Last contact						First pembrolizumab -> Last contact					First pembrolizumab->				
Subgroup	HR	Low Cl	Upper Cl	<i>p</i> -value	Q4	Q1	HR	Low Cl	Upper Cl	<i>p</i> -value	Q4	Q1	HR	Low Cl	Upper Cl	
Adenocarcinoma	0.787	0.73	0.85	<0.001	2784	2335	1.062	0.89	1.28	0.517	509	413	0.898	0.78	1.03	
AC EGFR WT	0.782	0.72	0.85	<0.001	2056	1729	0.879	0.72	1.07	0.207	411	324	0.882	0.75	1.03	
AC EGFR MT	0.786	0.63	0.99	0.038	508	284	1.993	0.77	5.18	0.148	50	16	1.697	0.87	3.33	
AC KRAS WT	0.852	0.77	0.95	0.002	1582	1271	1.094	0.84	1.43	0.509	266	191	1.017	0.83	1.24	
AC KRAS MT	0.642	0.57	0.73	<0.001	949	732	0.72	0.54	0.96	0.024	190	151	0.836	0.66	1.06	
Squamous Carcinoma	0.882	0.78	1.00	0.045	546	1347	0.73	0.54	0.99	0.041	103	228	0.72	0.56	0.93	
SCC EGFR WT	0.902	0.79	1.03	0.125	481	1145	0.673	0.49	0.94	0.018	90	195	0.713	0.54	0.94	
SCC EGFR MT	0.42	0.11	1.60	0.189	7	10	ND					NE				
SCC KRAS WT	0.869	0.76	1.00	0.042	463	1109	0.66	0.47	0.92	0.013	91	186	0.707	0.54	0.93	
SCC KRAS MT	1.456	0.83	2.57	0.189	21	46	ND					NC				

Figure 3: (A) Table of survival data for different NSCLC subpopulations segmented by SLC5A2-H vs SLC5A2-L. Kaplan-Meier curves representing overall survival for AC (B) and SCC (C) histology's.

 \frown **ARIS**[®]

- 0.01).

1)

2)

Study Highlights

• In AC, SLC5A2-H was associated with higher **rates** of *EGFR* (20.8 vs 13.5%, *p* < 0.05) and *STK11* mutations (20.1 vs 12.9%, *p* < 0.05), but **lower rates** of **TP53** (50.8 vs 69.5%, *p* < 0.05) and **ARID1A** (8.7 vs 4.6%, p < 0.05)

 AC and SCC SLC5A2-H tumors had a lower prevalence of PD-L1+ (AC: 47 vs 68%, SCC: 50 vs 67%, *p* < 0.05). AC *SLC5A2*-H tumors had a lower prevalence of TMB-H (30 vs 39%, p < 0.05), but not in SCC (40 vs 41%, p = 0.6).

• In AC, SLC5A2-H had longer OS as compared to SLC5A2-L (HR = 0.787 [0.73-0.85], *p* < 0.001)

• *SLC5A2*-H **SCC** tumors had significantly **longer OS** (HR 0.88, [0.78-1.00], *p* = 0.045) and **TOT with pembrolizumab** (HR .72 [0.56-.093], *p* =

• SLC5A2-H, KRAS mutant AC tumors had significantly **longer OS** (HR 0.64 [0.57-0.73], *p* < 0.001) whereas SLC5A2-H KRAS mutant SCC tumors (HR 1.46 [0.83-2.57], *p* = 0.19) trended towards shorter OS.

Conclusions

SLC5A2 expression was associated with a highly altered genomic landscape in AC In specific subgroups, high expression of SLC5A2 was associated with OS and TOT with immunotherapy

Presenter Contact: heng.tan@jhsmiami.org

Squamous

