

# Multiplatform molecular profiling of pancreatic adenocarcinomas identifies BRCA1/2 mutations and **PD-1/PD-L1 status with therapeutic implications**

Sherri Z. Millis<sup>1</sup>, Erin Baker<sup>3</sup>, Ryan Bender<sup>1</sup>, Jeff Swensen<sup>1</sup>, Brian Abbott<sup>1</sup>, Zoran Gatalica, MD<sup>1</sup>, Sandeep Reddy<sup>1</sup>, Alexander Rosemurgy<sup>2</sup>, David Iannitti<sup>3</sup> <sup>1</sup>Caris Life Sciences, Phoenix, AZ, <sup>2</sup>Florida Hospital, Tampa, FL and <sup>3</sup>Carolinas Medical Center, Charlotte NC

## **Abstract (No. 11108)**

Please note, below is a revised version of the abstract

**Background:** Pancreas adenocarcinoma (PAC) is a challenging disease with overall single digit 5-year survivorship. BRCA1 and BRCA2 germline mutations are associated with increased risk of PC. Recent retrospective studies have described response of BRCA patients to platinum agents and PARP inhibitors. Additionally, immune therapies targeting the programmed cell death pathway in other cancers have shown promise; evaluating the incidence of aberrations of these markers in PAC impact therapeutic decisions.

**Methods:** 450 PAC's were evaluated at a commercial CLIA laboratory using a combination of sequencing (Sanger or next generation sequencing (NGS)) and protein expression (immunohistochemistry). BRCA1/2 mutations that could be germline or somatic, co-incidence with other mutations identified in the tissue, and expression levels of PD-L1 and PD-1 tumor infiltrating lymphocytes (TIL's) were evaluated.

**Results:** Mutations (MT) in BRCA1 and BRCA2 were identified in 5 and 17% percent of tissues, respectively. BRCA1 and BRCA2 MT had different rates of concurrence with other gene alterations, which was also different from the general PC population (table). Overexpression of PD-L1 and PD-1 TIL's were also identified in 7% and 37% of PAC cases, respectively. BRCA2 MT cases had a higher incidence of PD-1 TIL's, while BRCA1 MT cases had a higher percent of overexpressed PD-L1 than the overall population.

| Biomarker MT | BRCA1 MT | BRCA2 MT      | Overall PC Population |  |  |
|--------------|----------|---------------|-----------------------|--|--|
|              |          | % Coincidence |                       |  |  |
| APC          | 14       | 0             | 3                     |  |  |
| BRAF         | 0        | 0             | 1                     |  |  |
| KRAS         | 71       | 77            | 85                    |  |  |
| PIK3CA       | 14       | 0             | 3                     |  |  |
| SMAD4        | 0        | 10            | 16                    |  |  |
| TP53         | 43 60    | 60            | 59<br>37              |  |  |
| PD-1         | 38       | 50            |                       |  |  |
| PD-L1        | 13       | 8             | 7                     |  |  |

**Conclusions:** The different frequencies of KRAS, TP53, PIK3CA and SMAD4 MT between the overall PAC population and BRCA MT populations may inform driver differences and may help select drugs and refine treatment decision making for certain patients. Evaluating the profiles of the BRCA MT populations with clinical outcomes will provide valuable insight into the clinical behavior in genomically defined subsets and may facilitate in developing rational combinations of targeted agents in PAC.

#### Methods

An additional 106 patients were identified to be included in the analysis since the submission of the abstract

All 556 pancreatic cancer cases underwent molecular profiling at Caris Life Sciences between 2014-2015. From this original cohort, three subgroups were used for further analysis: BRCA1 + (positive for BRCA1 mutations), BRCA2+ (positive for BRCA2 mutations) and BRCA1/2 (-) (wildtype BRCA1 and BRCA2). The original diagnosis of pancreatic cancer was obtained from the ordering physician and verified by a pathology team at Caris Life Sciences. Testing on formalin-fixed, paraffin-embedded tumor samples (this implies BRCA mutations may be of somatic or germline origin, we did not confirm on blood samples) included a combination of immunohistochemistry (IHC), in situ hybridization (ISH) performed by either fluorescent or chromogenic methods, and Sanger or next-generation sequencing (NGS). All IHC results were read by a boardcertified pathologist by measuring the intensity of the stain and percent staining. The KRAS testing included both Sanger and NGS. FISH was interpreted by a molecular cytogeneticist, while CISH was read by a board-certified pathologist. Clinical molecular geneticists provided the NGS interpretation. Statistical analysis was performed using JMP.



included in this analysis, and mean age.

| BRCA1<br>+ | BRCA2<br>+ | BRCA1/2<br>(-) |
|------------|------------|----------------|
| 8/199      | 26/199     | 165/199        |
| 4%         | 13%        | 83%            |

### **Patient & Tumor Characteristics**

| Specimer                    | n Sites Util | ized for Tumor Profiling      |      |
|-----------------------------|--------------|-------------------------------|------|
| er                          | 33.8%        | Lower lobe, lung              | 0.9% |
| ncreas, NOS                 | 28.8%        | Diaphragm                     | 0.7% |
| ad of pancreas              | 8.3%         | Pleura, NOS                   | 0.7% |
| nentum                      | 3.2%         | Upper lobe, lung              | 0.7% |
| ritoneum, NOS               | 2.9%         | Common bile duct              | 0.5% |
| ng, NOS                     | 2.7%         | Ovary                         | 0.5% |
| dy of pancreas              | 1.8%         | Supraclavicular lymph node    | 0.5% |
| l of pancreas               | 1.4%         | Abdominal wall, NOS           | 0.4% |
| odenum                      | 1.3%         | Ampulla of Vater              | 0.4% |
| roperitoneal lymph node     | 1.1%         | Colon, NOS                    | 0.4% |
| nnective, subcutaneous soft |              | Connective, subcutaneous soft |      |
| sues of abdomen             | 0.9%         | tissues of abdominal wall     | 0.4% |
|                             |              |                               |      |

Table 1. Specimen Sites Utilized for Tumor Profiling, liver, was the most common site (33.8%).



Table 2. Overall incidence of BRCA mutations (+) and BRCA wildtype or (-), in pancreatic adenocarcinomas tested in this analysis. Presence of BRCA2 vs. BRCA1 (p=0.0019).

# **Results**, continued

|                         |        |        | BR      | CA1    |        |        |         |         | I Tabl  |
|-------------------------|--------|--------|---------|--------|--------|--------|---------|---------|---------|
| Categorization          | VUS    | D      | D       |        | VUS    | VIIS   | VIIS    | VIIS    |         |
| Evon                    | 203    | г<br>л | г<br>с  | 10     | 1/     | 14     | 14      | 14      | BRC     |
| EXUII<br>Drotoin Chongo | 2      | 4      | 5       | 10     | 14     | 14     | 14      | 14      |         |
| Protein Change          | V1804D | M1775R | Q1756fs | 5864L  | G2755  | 1843R  | R1028C  | E1219D  |         |
|                         |        |        | BR      | CA2    |        |        |         |         | 11,10,1 |
| Categorization          | VUS    | VUS    | VUS     | VUS    | Р      | Р      | Р       | VUS     | Vdi     |
| Exon                    | 10     | 10     | 10      | 10     | 10     | 10     | 10      | 11      | sign    |
| Protein Change          | D596H  | D559N  | L629F   | C554W  | K437fs | Y600X  | E510fs  | H2074N  | Jight   |
| Categorization          | VUS    | VUS    | VUS     | VUS    | VUS    | Р      | Р       | VUS     | "pat    |
| Exon                    | 11     | 11     | 11      | 11     | 11     | 11     | 11      | 14      |         |
| Protein Change          | F1219V | T774A  | S1674G  | T2250A | S1979R | C711X  | S1064fs | P2347Q  | EXO     |
| Categorization          | VUS    | VUS    | VUS     | VUS    | VUS    | Р      | Р       | Р       | eac     |
| Exon                    | 14     | 17     | 17      | 17     | 19     | 19     | 22      | 23      | cuo     |
| <b>Protein Change</b>   | K2339N | D2712V | S2670L  | A2717S | D2811G | W2788X | Q2960X  | T3033fs | prov    |
| Categorization          | VUS    | VUS    |         |        |        |        |         |         | aro     |
| Exon                    | 26     | 27     |         |        |        |        |         |         | ale     |
| Protein Change          | P3194Q | V3244I |         |        |        |        |         |         |         |

e 3. Characterization of CA1 and BRCA2 mutations. BRCA variants fell into the riant of unknown nificance" (VUS) or thogenic" (P) categorization. ons and protein changes for ch variant detected are vided. Pathogenic variants highlighted in yellow.



Figure 2. Positive Expression Rates of Predictive IHC Biomarkers across PC patients with wildtype BRCA status or BRCA1/2 (-) (n=165) and compared to BRCA1 + (n=8) and BRCA2+ (n=26). No statistically significant differences exist comparing the subgroups.

|             | -          |             |  |  |  |  |
|-------------|------------|-------------|--|--|--|--|
| BRCA status | HER2       | cMET        |  |  |  |  |
| BRCA1+      | 0% (0/8)   | 0% (0/7)    |  |  |  |  |
| BRCA+       | 0% (0/26)  | 4% (1/24)   |  |  |  |  |
| BRCA1/2 (-) | 2% (3/156) | 1.3% (2/154 |  |  |  |  |

Table 4. Amplification events in Pancreatic Cancers according to BRCA status







Figure 3. Mutation profiles of BRCA1+ (n=8), BRCA2+ (n=26) and wildtype BRCA status or BRCA1/2 (-) (n=165). No statistically significant differences exist among the subgroups.

#### **Conclusions**

- The different frequencies of KRAS, TP53, PIK3CA and SMAD4 MT between the overall PAC population and BRCA MT populations may inform driver differences and may help select drugs and refine treatment decision making for certain patients.
- Evaluating the profiles of the BRCA MT populations with clinical outcomes will provide valuable insight into the clinical behavior in genomically defined subsets and may facilitate in developing rational combinations of targeted agents in PAC.

#### References

- 1. Oncologist. 2011;16(10):1397-402. An emerging entity: pancreatic adenocarcinoma associated with a known BRCA mutation: clinical descriptors, treatment implications, and future directions. Lowery MA1, Kelsen DP, Stadler ZK, Yu KH, Janjigian YY, Ludwig E, D'Adamo DR, Salo-Mullen E, Robson ME, Allen PJ, Kurtz RC, O'Reilly EM.
- 2. Cancer. 2015 Jan 15;121(2):269-75. Cancers associated with BRCA1 and BRCA2 mutations other than breast and ovarian. Mersch J1, Jackson MA, Park M, Nebgen D, Peterson SK, Singletary C, Arun BK, Litton JK.