Keck School of Medicine of USC

\bigcirc Abstract ID: 4066

Introduction

- NF1 encodes neurofibromin, which is a key GTPase-activating protein that downregulates RAS activation. Inactivating mutations in NF1 result in sustained activation of RAS signaling, a key driver for development of colorectal cancer (CRC).¹
- In the TCGA cohort, 9% of lung adenocarcinoma and 10% of melanoma showed *NF1* mutation, exclusively occurring with oncogenic RAS and BRAF mutations.²⁻³ In the TCGA CRC cohort NF1 mutations were present in 2.8% but one could not assess the relationship to RAS/BRAF mutations.⁴
- *NF1* mutations have been suggested to be a potential mechanism of resistance to EGFR inhibition in RAS-wild type CRC.5-7
- We here performed molecular characterization of NF1 mutated (MT) CRC.
 - 1. Rad E, et al. Semin Cell Dev Biol. 2016. 52:39-46.
 - 2. Cancer Genome Atlas Research Network. Nature. 2014. 511:543-50.
 - 3. The Cancer Genome Atlas Network. Cell. 2015. 161:1681-96.
 - 4. Cancer Genome Atlas Network. Nature. 2012. 487:330-7.
 - 5. Woolston A, et al. Cancer Cell. 2019. 36:35-50. 6. Post JB, et al. Oncotarget. 2019. 10:1440-57.
 - 7. Georgiou A, et al. Mol Cancer Res. 2020. doi: 10.1158/1541-7786.MCR-19-1201

Method

- Tumor profiles from 8150 CRC patients (pts) with available NF1 mutation status were retrospectively reviewed.
- NextGen sequencing by a customized 592-gene panel was performed.
- Microsatellite instability (MSI) status was tested with a combination of immunohistochemistry (IHC), fragment analysis and NGS.
- Tumor mutational burden (TMB) was calculated based on somatic nonsynonymous missense mutations.
- PD-L1 was tested by IHC (SP142).
- Molecular profiles between *NF1*-MT and *NF1*-WT pts were compared.
- Student-t test (for mean values) and Wilcoxon rank-sum testing (for median values) were used for comparison of continuous data. Categorical data were analyzed using Fisher's exact test or Chisquare test where appropriate.

Detected mutations in NF1

- In total, 176 pts (2.2%) had pathogenic or presumed pathogenic NF1 mutations
- 25 cases had >1 NF1 mutations.
- A total of 204 *NF1* mutations were observed.

Details of observed *NF1* mutations

Туре	N	% of total	Function
Frameshift	88	43.1%	Truncating mutations are generally presumed
Nonsense	79	38.7%	loss-of-function.
Splicing	24	11.8%	Functional consequence is unclear.
Other	7	3.4%	Functional consequence is unclear.
Missense	5	2.5%	Identified variants are presumed loss-of-function.
UTR	1	0.5%	Functional consequence is unclear.
Total	204	100.0%	Pathogenic/Presumed Pathogenic

Patient characteristics								
	Total		NF1-MT		NF1-WT		<i>P</i> -value (<i>NF1</i> -MT vs WT)	
Patient number	8150		176 (<mark>2.2%</mark>)		7974			
Median age (range)	60 (14-90+)		57 (24-89)		60 (14-90+)		0.04	
Sex Male Female	4404 3746	(54.0%) (46.0%)	103 73	(58.5%) (41.5%)	4301 3637	(53.9%) (46.1%)	0.28	
Primary tumor location Left Right Unclear	3866 1980 2304	(47.4%) (24.3%) (28.3%)	69 58 49	(39.2%) (33.0%) (27.8%)	3797 1922 2255	(47.6%) (24.1%) (28.3%)	0.02	
MSI/MMR status MSI-H/dMMR MSS/pMMR Unclear	540 7582 28	(6.6%) (93.0%) (0.3%)	73 103 0	(41.5%) (58.5%) (0.0%)	467 7479 28	(5.9%) (93.8%) (0.4%)	<0.01	

	All potiente		All		MSS/pMMR		
	(N = 8150)	<i>NF1</i> -MT (N = 176)	<i>NF1</i> -WT (N = 7974)	P-value	<i>NF1</i> -MT (N = 103)	<i>NF1</i> -WT (N = 7479)	<i>P</i> -value
APC	73.0%	63.2%	73.2%	<0.01	76.2%	75.2%	0.81
TP53	71.6%	51.5%	72.1%	<0.01	69.5%	74.4%	0.27
KRAS	48.6%	32.4%	49.0%	<0.01	38.8%	50.3%	0.02
ARID1A	24.5%	57.5%	23.3%	<0.01	34.4%	15.2%	0.01
PIK3CA	16.9%	25.0%	16.7%	<0.01	19.4%	15.9%	0.34
SMAD4	11.9%	13.2%	11.8%	0.55	13.9%	12.2%	0.65
FBXW7	10.1%	24.7%	9.7%	<0.01	21.5%	8.6%	<0.01
BRAF	8.9%	16.6%	8.8%	<0.01	2.0%	6.7%	0.06
RNF43	6.4%	29.5%	5.9%	<0.01	3.9%	2.5%	0.33
AMER1	6.1%	12.1%	5.9%	<0.01	8.9%	5.4%	0.13
POLE	0.6%	11.4%	0.4%	<0.01	18.4%	0.3%	<0.01
HR genes	8.2%	39.8%	7.5%	<0.01	17.5%	4.4%	<0.01
TMB (mean)		48.9/Mb	10.0/Mb	<0.01	48.3/Mb	8.2/Mb	<0.01
TMB-H (<u>></u> 17/Mb)		54.0%	6.3%	<0.01	21.4%	1.0%	<0.001
PD-L1 <u>></u> 5%		12.9%	3.6%	<0.01	7.1%	2.6%	0.02

Somatic alterations of NF1 in colorectal cancer

Hiroyuki Arai¹, Andrew Elliott², Joanne Xiu², Jingyuan Wang¹, Francesca Battaglin¹, Shivani Soni¹, Wu Zhang¹, Sohal Davendra³, Richard M. Goldberg⁴, Michael J. Hall⁵, Aaron James Scott⁶, Khushman Mohd₇, Jimmy J. Hwang⁸, Emil Lou⁹, Benjamin A. Weinberg¹⁰, Albert Craig Lockhart¹¹, Anthony Frank Shields¹², W. Michael Korn², and Heinz-Josef Lenz¹

1 Norris Comprehensive Cancer Center, University of Southern California, 2 Caris Life Sciences, 3 University of Cincinnati, 4 West Virginia University, 5 Fox Chase Cancer Center, 6 University of Arizona, 7 University of South Alabama, 8 Levine Cancer Institute, 9 University of Minnesota, 10 MedStar Georgetown, 11 University of Miami, 12 Karmanos Cancer Institute

Results

(%)

16 т

14

12

Co-mutations with NF1 in MSS/pMMR cases

Comparison of NF1-MT and NF1-WT on major gene mutations and immunotherapy-related markers

	Summary				
/ status	 Out of 8150 pts, 176 (2.2%) had somatic NF1 mutations with pathogenic or presumed pathogenic function. 				
	 A higher NF1-MT frequency was observed in MSI-H/dMMR vs MSS/pMMR (13.5% vs 1.4%, p<0.0001), in right-sided vs left sided (2.9% vs 1.8%, p<0.01), and in RAS-WT vs RAS-MT (3.0% vs 1.4%, p<0.0001). In MSS/pMMR tumors, no association with sidedness was observed (right: 1.3% vs left: 1.2%, NS). 				
p < 0.01 3.0 1.4	 The most prevalent co-mutations with NF-1 were APC (63.2%), ARID1A (57.5%), TP53 (51.5%), KMT2D (32.9%) and KRAS (32.4%) in all cases, and APC (76.2%), TP53 (69.5%), KRAS (38.8%), ARID1A (34.4%) and FBXW7 (21.5%) in MSS/pMMR cases. POLE mutation was observed in 18.4% of NF1-MT/MSS/pMMR pts. 				
RAS-WT (N = 3918) RAS-MT (N = 4229)	 Compared to NF1-WT pts, NF1-MT pts had more frequent mutations in ARID1A (All: 57.5% vs 23.3%, p<0.0001; MSS/pMMR: 34.4% vs 15.2%, p<0.05), and less frequent mutations in KRAS (All: 32.4% vs 49.0%, p<0.0001; MSS/pMMR: 38.8% vs 50.3%, p<0.05). 				
	 NF1-MT pts had more frequent alterations in homologous recombination pathway compared to NF1-WT pts (All: 39.8% vs 7.5%, p<0.0001; MSS/pMMR: 17.5% vs 4.4%, p<0.0001). 				
13.9 11.1 MAD4 KMT2C	 Mean TMB was significantly greater in <i>NF1</i>-MT than <i>NF1</i>-WT (All: 48.9/Mb vs 10.0/Mb, p<0.0001; MSS/pMMR: 48.3/Mb vs 8.2/Mb, p<0.0001). Also, PD-L1 positivity was higher in <i>NF1</i>-MT compared to <i>NF1</i>-WT (All: 12.9% vs 3.6%, p<0.0001; MSS/pMMR: 7.1% vs 2.6%, p<0.05). 				
	Conclusions				
	 NF1 mutations were more frequent in RAS-WT and MSI-H CRC pts. 				
	• <i>NF1</i> -MT was associated with alterations in chromatin remodeling and DNA damage response pathways, as well as elevated TMB and PD-L1 expression, which may provide alternative therapeutic strategies beyond EGFR inhibition.				

Contact us: hiroyuki.aria.1217@gmail.com